Espectroscopia de absorción atómica



La espectroscopía de absorción atómica (a menudo llamada AA) es un método que utiliza comúnmente un nebulizador pre-quemador (o cámara de nebulización) para crear una niebla de la muestra y un quemador con forma de ranura que da una llama con una longitud de trayecto más larga. 

La temperatura de la llama es lo bastante baja para que la llama de por sí no excite los átomos de la muestra de su estado fundamental. El nebulizador y la llama se usan para desolvatar y atomizar la muestra, pero la excitación de los átomos del analito es hecha por el uso de lámparas que brillan a través de la llama a diversas longitudes de onda para cada tipo de analito.

En la AA, la cantidad de luz absorbida después de pasar a través de la llama determina la cantidad de analito en la muestra. Una mufla de grafito para calentar la muestra a fin de desolvatarla y atomizarla se utiliza comúnmente hoy día para aumentar la sensibilidad. El método del horno de grafito puede también analizar algunas muestras sólidas o semisólidas. Debido a su buena sensibilidad y selectividad, sigue siendo un método de análisis comúnmente usado para ciertos elementos traza en muestras acuosas (y otros líquidos).

Atomización con llama

En un atomizador con llama la disolución de la muestra es nebulizada mediante un flujo de gas oxidante mezclado con el gas combustible y se transforma en una llama donde se produce la atomización. El primer paso es la desolvatación en el que se evapora el disolvente hasta producir un aerosol molecular sólido finamente dividido. Luego, la disociación de la mayoría de estas moléculas produce un gas atómico.

Tipos de llama

CombustibleOxidanteTemperaturaVel. de Combustión
Gas LPAire1700-190039-43
Gas LPOxígeno2700-2800370-390
HidrógenoAire2000-2100300-440
HidrógenoOxígeno2550-2700900-1400
AcetilenoAire2100-2400158-266
AcetilenoOxígeno3050-31501100-2480
AcetilenoÓxido nitroso2600-2800285

Estructura de llama

Las regiones más importantes de la llama son la zona de combustión primaria secundaria y zona interzonal, esta última es la zona más rica en átomos libres y es la más ampliamente utilizada.

Perfiles de temperatura

La temperatura máxima se localiza aproximadamente 1 cm por encima de la zona de combustión primaria

Atomizadores de llama

El aerosol formado por el flujo del gas oxidante, se mezcla con el combustible y se pasa a través de una zona de flectores que eliminan las gotitas que no sean muy finas. Como consecuencia de la acción de estas, la mayor parte de la muestra se recoge en el fondo de una cámara y se drena hacia un contenedor de desechos. El aerosol, el oxidante y el combustible se queman en un mechero provisto de una ranura de 1 mm o 2 de ancho por 5 ó 10 mm de longitud. Estos mecheros proporcionan una llama relativamente estable y larga, estas propiedades aumentan la sensibilidad y la reproducibilidad.

Reguladores de combustibles y oxidantes

Los caudales de oxidante y combustible constituyen variables importantes que requieren un control preciso es deseable poder variar cada uno de ellos en un intervalo amplio para poder encontrar experimentalmente las condiciones óptimas para la atomización

Características del funcionamiento de los atomizadores de llama

Señal de salida

La señal del detector aumenta al máximo algunos segundos después de la ignicion y cae rápidamente a cero cuando los productos de atomización salen fuera.

Atomización en vapor frío

La técnica de vapor frío solamente aplicable a la determinación de mercurio ya que es el único elemento metálico que tiene una presión vapor apreciable a temperatura ambiente.

Fuentes de radiación

Los métodos analíticos basados en la absorción atómica son potencialmente muy específicos, ya que las líneas de absorción atómica son considerablemente estrechas (de 0,002 a 0,0005 nm)y las energías de transición electrónica son específicas de cada elemento

Lámpara de cátodo hueco

Este tipo de lámparas consiste en un ánodo de wolframio y un cátodo cilíndrico cerradas herméticamente en un tubo de vidrio lleno con neón / argón a una presión de 1 a 5 torr. El cátodo esta constituido con el metal cuyo espectro se desea obtener, o bien, sirve de soporte para una capa de dicho metal. Una parte de estos átomos se excitan con la luz que pasa a través de ellos y, de este modo, al volver al estado fundamental emiten su radiación característica, los átomos metálicos se vuelven a depositar difundiendo de nuevo hacia la superficie del cátodo o hacia las paredes del vidrio. La configuración cilíndrica del cátodo tiende a concentrar la radiación en una región limitada del tubo metálico, este diseño aumenta la probabilidad de que la redepositación sea en el cátodo y no sobre la pared del vidrio.

Instrumentos de haz sencillo

Consiste en una fuente de cátodo hueco, un contador o una fuente de alimentación de impulsos, un atomizador, un espectrofotómetro sencillo de red de difracción y un detector. El haz de luz proveniente de la fuente pasa directamente a través de todos los componentes del instrumento hasta llegar al detector.

Instrumentos de doble haz

Básicamente consta de las mismas partes que el sistema de haz sencillo, sólo que el haz que proviene de la fuente de cátodo hueco se divide mediante un contador reflejante y un divisor de haz, una mitad pasa a través de la llama y la otra es enviada por un paso óptico interno. Los dos haces se encuentran nuevamente en el mismo camino óptico mediante un espejo semiplateado o recombinador antes de entrar al monocromador.

Monocromadores

Existen diversas combinaciones y distribuciones de los componentes ópticos dentro de un monocromador que buscan optimizar la calidad del espectro generado. Las más comunes son las denominadas Litrow y Zcerny-Turner para sistemas convencionales con redes de difracción holográficas. También se están comenzando a utilizar monocromadores con redes Echelle.

Detectores

El detector es el dispositivo encargado de captar la señal óptica proveniente del monocromador y transformarlo en una señal electrónica capaz de ser convertida en un valor legible. El más común es el fotomultiplicador, tubo de vacío provisto de placas fotosensibles que recibe los fotones, los convierte en impulsos electrónicos y multiplica hasta obtener la suficiente intensidad eléctrica. En años reciente se están utilizando también los detectores de estado sólido CCD, de alta sensibilidad asociados a los monocromadores Echelle.

Interferencias

Se producen cuando la absorción o emisión de una especie interferente se solapa o aparece muy próxima a la absorción o emisión del analito, de modo que su resolución por el monocromador resulte imposible. Las interferencias químicas se producen como consecuencia de diversos procesos químicos que ocurren durante la atomización y que alteran las características de absorción del analito. Dado que las líneas de emisión de las fuentes de cátodo hueco son muy estrechas es rara la interferencia debida a la superposición de las líneas, para que exista esta interferencia la separación entre las dos líneas tiene que ser menor a 0,1 Å.

Formación de compuestos poco volátiles

El tipo más común de interferencia es el producido por aniones que forman compuestos de baja volatilidad con el analito y reducen así su velocidad de atomización lo que origina resultados menores a los esperados.

 
Este articulo se basa en el articulo Espectroscopia_de_absorción_atómica publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.