Oxonio



Ion hidronio
Nombre (IUPAC) sistemático
Oxonio
General
Fórmula semidesarrollada H3O+
Identificadores
Número CAS n/d
Propiedades físicas
Densidad n/d
Masa 19.02 u
Punto de fusión n/d
Punto de ebullición n/d
Propiedades químicas
Acidez (pKa)−1.7
Solubilidad en agua n/d
KPS n/d
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.

Exenciones y referencias

En química, el ion oxonio corresponde al catión H3O+. También se le llama comúnmente hidronio.

Conocimientos adicionales recomendados

Tabla de contenidos

Nomenclatura

De acuerdo con la nomenclatura de iones de la IUPAC, este catión debe llamarse "oxonio". Hidroxonio también puede usarse para referirse a este catión sin ambigüedad. Una propuesta preliminar de la IUPAC consiste en llamar oxonio y oxidanio para referirse a compuestos en el ámbito orgánico e inorgánico respectivamente.

Ácidos y acidez

Hidronio es el catión que se forma en agua en presencia de cationes de hidrógeno H+. Estos cationes no se presentan libremente; son extremadamente reactivos y son solvatados inmediatamente por las moléculas de agua circundantes. Generalmente, se llama ácido a cualquier compuesto que sea fuente de estos cationes; de todas formas, como el agua puede comportarse como un ácido (y también como una base, a este comportamiento se le denomina anfotérico), el hidronio se presenta incluso en agua pura. La concentración de iones hidronio en agua pura es de CH+ = 10–7 M. Estos iones se forman, en agua pura sin otras especies ácidas o básicas, mediante la reacción de dos moléculas de agua, según:

2 H2O → H3O+ + OH-

La constante de esta reacción es de Kw = 10–14 (constante conocida como producto iónico del agua).

Los iones, tanto hidronio como hidróxido resultantes de esta reacción tienen una vida media muy breve, con la concentración indicada anteriormente.

El hidronio es muy ácido; a 25 ºC, su pKa = –1,7. Es también la especie más ácida que puede existir en agua, asumiendo una cantidad suficiente de disolvente para darse la reacción. La acidez del hidronio es el estándar implícito a la hora de medir la acidez de otras especies: un ácido fuerte debe ser mejor dador de hidronios que el agua pura, de otra forma una gran proporción del ácido existirá en disolución en un estado de no-ionización, como es el caso de los llamados ácidos débiles. Frente a los hidronios procedentes de la autodisociación del agua, los procedentes de los ácidos fuertes tienen una vida media larga y su concentración es elevada, comparable a la del ácido que los ha formado.

El pH de una disolución es la medida de la concentración de los protones; como los protones reaccionan con el agua para dar iones hidronio, se puede considerar el pH como la concentración de esta última especie.

Solvatación

Aún no está definida totalmente la forma en que las moléculas de agua solvatan a los protones (cationes hidrógeno), debido a las diferentes formas de solvatación existentes. Un estudio de la solvatación a la temperatura de congelación del agua dedujo que la hidratación media en agua fría viene a ser H3O+(H2O)6: como media, seis moléculas de agua solvatan un protón y éstas son incapaces a su vez de solvatar simultáneamente otra especie.

Algunas estructuras de solvatación son bastante grandes: el ion mágico H3O+(H2O)20 (llamado mágico debido a su mayor estabilidad frente a otras estructuras con un número comparable de moléculas) encerraría el protón dentro de una estructura dodecaédrica. Debido a la alta reactividad del protón, esto no impide que se encuentre asociado a otras especies dentro de esta estructura.

Otras dos estructuras bien conocidas y estudiadas son los cationes Zundel y Eigen. En la Eigen, el protón se sitúa dentro de un complejo H9O4+ donde está unido fuertemente a tres moléculas vecinas mediante enlace de puente de hidrógeno.

 


Zundel propone una estructura H5O2+, donde el protón se enlaza con igual fuerza a dos moléculas de agua.

 


Artículos recientes indican que estas estructuras son unos modelos ideales y en la realidad tenemos cationes de solvatación híbridos y con características de algunos de ellos a la vez.

Sales de hidronio sólidas

Para muchos ácidos fuertes, es posible cristalizar sus sales de hidronio, siendo éstas relativamente estables. Estas sales se llaman en ocasiones monohidratos ácidos. Generalmente, un ácido con una constante de ionización de 109 o superior es capaz de formar este tipo de sales, mientras que aquellos ácidos con una constante menor son incapaces de hacerlo. Como ejemplo, el ácido clorhídrico tiene una Ka = 107, y sus mezclas con agua en cualquier proporción son siempre líquidas a temperatura ambiente. Sin embargo, el ácido perclórico tiene una Ka de 1010, y si mezclamos ácido perclórico anhidro con agua en una proporción molar de 1 a 1, se formarán sus sales de hidronio sólidas.

Bibliografía

  1. Zavitsas, A. A. (2001) Properties of water solutions of electrolytes and nonelectrolytes. J. Phys. Chem. B 105 7805-7815.
  2. Hulthe, G.; Stenhagen, G.; Wennerström, O. & C-H. Ottosson, C-H. (1997) Water cluster studied by electrospray mass spectrometry. J. Chromatogr. A 512 155-165.
  3. Zundel, G. & Metzger, H. (1968) Energiebänder der tunnelnden Übershuß-Protenon in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+ Z. Phys. Chem. 58 225-245.
  4. Wicke, E.; Eigen, M. & Ackermann, Th. (1954) Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z. Phys. Chem. 1 340-364.
  5. Marx, D.; Tuckerman, M. E.; Hutter, J. & Parrinello, M. (1999) The nature of the hydrated excess proton in water. Nature 397 601-604.
 
Este articulo se basa en el articulo Oxonio publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.