El CSIC presenta su prototipo de batería de vanadio para el almacenamiento de energía eléctrica a gran escala

Se trata de un demostrador de flujo redox de 10 kW que abre el camino hacia una batería de flujo de 50 kW

01.04.2022 - España

Un equipo de investigadores del CSIC ha desarrollado un prototipo de batería de flujo redox de vanadio de 10 kilovatios (Kw) para demostrar su viabilidad como sistema de almacenamiento de energía eléctrica a gran escala, dirigido especialmente a las energías renovables. Este prototipo de 10 kW (10 kW de potencia y 20 kWh de energía) permite acumular energía eléctrica para aplicaciones estacionarias, como el almacenamiento de energía en viviendas o pequeños comercios  

PTI TransEner

Batería de flujo de vanadio de 10 kW.

Esta tecnología constituye el primer hito en el camino para obtener una batería de 50 kilovatios, que permitirá extender el uso de esta tecnología al sector industrial. El prototipo se ha presentado hoy en un acto celebrado en el Instituto de Carboquímica (ICB-CSIC), en Zaragoza, y ha contado con la presencia de la presidenta del CSIC, Rosa Menéndez, entre otras autoridades. El evento, abierto a la sociedad y a las empresas, se ha podido seguir a través de Youtube.

Este prototipo es fruto del trabajo de la Plataforma Temática Interdisciplinar PTI TrasnEner+, del CSIC, y supone una apuesta tecnológica para el almacenamiento estacionario de energía eléctrica a gran escala, con el objetivo de alcanzar una mayor integración de las energías renovables, superar sus problemas de intermitencia y acelerar la transición energética. El proyecto está coordinado por Ricardo Santamaría, investigador del Instituto de Ciencia y Tecnología del Carbono (INCAR), y cuenta con la participación de grupos de ocho centros del CSIC: INCAR, LIFTEC (integrado en el ICB), ITQ, IRI, ICB, ICMM, ICMAB e ICTP.

Las baterías de flujo redox son dispositivos con una gran flexibilidad en los que la energía está almacenada en los electrolitos, que contienen las especies de vanadio electroactivas. Estos electrolitos se encuentran en tanques externos y fluyen gracias a la acción de bombas hidráulicas por el interior de las celdas de la batería donde se producen las reacciones electroquímicas de oxidación-reducción.

Su principal ventaja es la versatilidad que ofrecen: la potencia y la energía del sistema se pueden configurar de forma independiente mediante el aumento de la superficie activa de los electrodos, el número de celdas y el volumen de electrolito. Tienen, además, un ciclo de vida largo que puede superar los 20 años, lo que las convierte en excelentes candidatas para aplicaciones estacionarias y de uso intensivo, donde otras tecnologías como las baterías de litio no pueden competir, facilitando la penetración de las energías renovables en el mercado.

“Una de las grandes ventajas de las baterías de flujo redox es que pueden dimensionarse en potencia y capacidad para dar servicio en aplicaciones de almacenamiento tanto delante como detrás del contador; es decir, pueden conectarse directamente a plantas de generación conectadas a las redes de distribución o instalarse en los centros de consumo de energía o en su proximidad”, comenta Santamaría.

Un proyecto gestado en un entorno de colaboración multidisciplinar

Este módulo de 10 kW supone el primer hito del proyecto de conseguir una batería de 50 kW. El prototipo está formado por 4 stacks (apilamientos de celdas) similares a los que incorporará la batería de 50 kW. Los diversos componentes de la batería han sido desarrollados por equipos diferentes del CSIC. El diseño de todos los elementos que forman la batería, la tecnología de los sistemas de sellado y cierre, y los procesos de fabricación y montaje son obra del grupo de investigación del LIFTEC liderado por el investigador Félix Barreras. Los fieltros de carbono que se usan como electrodos han sido modificados por el grupo de investigación del INCAR para mejorar sus propiedades electroquímicas, mientras que el grupo del ITQ, dirigido por Antonio Chica, se ha encargado de las membranas y el electrolito.

El módulo incorpora, además, un sistema de gestión de la batería y la energía de desarrollo propio, basado en protocolos de operación compatibles con los estándares industriales, con el que se puede conocer el estado de la batería en todo momento.

Asimismo, el grupo de investigación del Instituto de Robótica e Informática Industrial (IRI), dirigido por Ramón Costa, colabora con el grupo del LIFTEC en el diseño de un sistema de telemetría que permite operar la batería de forma remota y visualizar todas las variables de funcionamiento en tiempo real. También están trabajando en la implementación de técnicas para la predicción del estado de carga y de salud que permitan la gestión eficiente de los flujos de energía y la prolongación de la vida útil del dispositivo.

Tecnología con un amplio campo de aplicaciones

El prototipo de 10 kW podría cubrir las crecientes necesidades de autoconsumo energético residencial tanto en viviendas aisladas como en pequeñas comunidades de vecinos, o incluso para pequeños consumidores comerciales.

Sin embargo, el objetivo final del proyecto es validar el prototipo de 50 kW conectándolo a una planta de generación de energía renovable, como puede ser un campo solar. Para ello se ha desarrollado una microrred inteligente en el LIFTEC, formada por la batería de flujo de 10 kW, un campo solar y varias cargas y fuentes programables que permiten simular diferentes consumos.

Tal y como indica Félix Barreras, “esta instalación permitirá estudiar casos realistas según las necesidades del mercado, con una arquitectura de potencia modular que permite el uso de la batería en modo aislado o conectada a red, ya sea en corriente alterna como en continua”

Más noticias del departamento ciencias

Noticias más leídas

Más noticias de nuestros otros portales

Descubra los últimos avances en tecnología de pilas