Si piensa en una batería, lo más probable es que le venga a la mente el término ión-litio. Debido a su peso ligero, su alta densidad energética y su capacidad para suministrar tres veces más corriente que otros tipos de baterías recargables, las baterías de iones de litio (LIB) se han conve ... más
Aumentar el rendimiento de las baterías con vidrios negros injertados en silicio micrométrico
Los científicos desarrollan micropartículas de silicio injertadas en vidrio negro como material de electrodos negativos para mejorar el rendimiento de las baterías de iones de litio
El silicio es el segundo elemento más abundante de la Tierra, con un 27,7% de la corteza terrestre. Aparte de su capacidad para crear playas de arena y vidrios transparentes, el silicio también tiene el potencial de fabricar baterías de iones metálicos altamente eficientes.
En un mundo en el que los dispositivos de almacenamiento de energía alternativos, como las baterías de iones de litio, están cobrando impulso, es necesario aprovechar la excelente capacidad energética específica del silicio como material de electrodos. La aplicación comercial de los materiales de electrodos basados en el silicio suele verse obstaculizada por dos razones principales 1) la falta de estabilidad mecánica derivada de la expansión incontrolada del volumen tras la litiación, el proceso de combinación con un ión-litio, y 2) el rápido desvanecimiento de la energía causado por la formación de una inestable interfaz sólido-electrodo (SEI).
A lo largo de los años, los científicos han desarrollado varios electrodos negativos o materiales anódicos avanzados basados en el silicio para superar los problemas mencionados. Los más destacados son los nanomateriales de silicio. Sin embargo, los nanomateriales de silicio presentan ciertas desventajas, como una gran diferencia entre la demanda y la oferta, un proceso de síntesis difícil y caro y, sobre todo, la amenaza de que la batería se agote rápidamente.
Ahora, un grupo de investigadores del Instituto Avanzado de Ciencia y Tecnología de Japón (JAIST), dirigido por el profesor Noriyoshi Matsumi, propone una solución a estos problemas que afectan a las micropartículas de silicio (SiMP). En su estudio, publicado en la revista Journal of Materials Chemistry A el 18 de julio de 2022, el equipo presentó un enfoque holístico para sintetizar nuevas micropartículas de silicio altamente resistentes, consistentes en vidrios negros (oxicarburo de silicio) injertados en silicio como material anódico para baterías de iones de litio. El equipo de investigación estaba formado por Ravi Nandan, becario de investigación, Noriyuki Takamori, estudiante del curso de doctorado, Koichi Higashimine, especialista técnico, y el Dr. Rajashekar Badam, antiguo profesor titular del JAIST.
"Las nanopartículas de silicio podrían proporcionar una mayor superficie efectiva, pero eso conlleva sus propios inconvenientes, como un mayor consumo de electrolito, así como una escasa eficacia coulómbica inicial tras unos cuantos ciclos de carga y descarga. Los SiMP son la alternativa más adecuada, de bajo coste y fácilmente disponible, especialmente cuando se combinan con materiales que tienen propiedades estructurales excepcionales, como los vidrios negros de oxicarburo de silicio. Nuestro material no sólo es de alto rendimiento, sino que también permite escalar las oportunidades", explicó el profesor Matsumi cuando se le preguntó por la razón del estudio.
El equipo diseñó un material de tipo núcleo-cáscara en el que el núcleo estaba formado por SiMP recubierto de una capa de carbono y luego se injertaban los vidrios negros de oxicarburo de silicio como capa de la cáscara. Los materiales preparados se utilizaron en una configuración de media celda anódica para probar su capacidad de almacenar reversiblemente el litio bajo diferentes ventanas de potencial. Este examen demostró que el material tiene una gran capacidad de difusión del litio, una resistencia interna reducida y una expansión volumétrica general. Las propiedades electroquímicas superiores de este nuevo material se establecieron además por la retención del 99,4% de la capacidad energética incluso después de 775 ciclos de carga y descarga. Además de las capacidades superlativas de almacenamiento de energía, el material también mostró una gran estabilidad mecánica a lo largo del proceso de prueba.
Los resultados indican claramente la superioridad de los nuevos materiales de ánodos activos basados en SiMP. De hecho, estos materiales han abierto nuevas vías para la aplicación del silicio en las baterías secundarias de iones de litio de próxima generación. La capacidad de ampliación de este proceso de síntesis puede contribuir a salvar la distancia entre la investigación de laboratorio y las aplicaciones industriales en el campo del almacenamiento de energía. Esto es especialmente importante para la producción de vehículos eléctricos de bajo coste, que pueden reducir notablemente las emisiones de carbono. El profesor Matsumi destaca esta importante aplicación de su estudio diciendo: "Nuestra metodología ofrece una vía eficaz para el desarrollo de materiales anódicos de alto rendimiento para baterías de iones de litio energéticamente eficientes, lo que constituye un elemento esencial para crear un mañana sostenible y con bajas emisiones de carbono."
Japan Advanced Institute of Science and Technology (JAIST)
- silicio
- baterías
- electrodos
- baterías de iones de litio
-
Noticias
Sensor de grafeno integrado en el tamiz molecular de carbono
El grafeno, una lámina de carbono de grosor atómico, ha encontrado inmensas aplicaciones en los sensores de gas debido a su sensibilidad de una sola molécula, sus bajos niveles de ruido y su alta densidad de portadores. Sin embargo, la tan anunciada sensibilidad del grafeno también signific ... más
Las baterías de iones de litio (LIB), conocidas por su longevidad, sus excelentes características de almacenamiento de carga, su alta densidad energética y su elevado voltaje de funcionamiento, se han convertido en la piedra angular de la electrónica portátil, los vehículos electrónicos y l ... más
- 1Un nuevo método de refrigeración
- 2Rompiendo el amoníaco: Un nuevo catalizador para generar hidrógeno a partir de amoníaco a bajas temperaturas
- 3Los átomos de un cristal saltan de forma similar a las partículas cósmicas
- 4Un sistema solar convierte el plástico y los gases de efecto invernadero en combustibles sostenibles
- 5Una nueva forma de descontaminar el agua y el gas con una nueva zeolita de poro extragrande 3D
- 6De la carretera al plato: la lechuga absorbe aditivos tóxicos del desgaste de los neumáticos
- 7Convertir minas abandonadas en baterías
- 8La electroquímica convierte el carbono en moléculas útiles
- 9El telescopio espacial desvela el lado oscuro de la química del hielo preestelar
- 10Convertir los residuos plásticos en un valioso aditivo para el suelo
- Lubricantes para acero inoxidable
- Una gota de agua iluminada crea un "átomo óptico".
- Los meteoritos revelan el posible origen de las sustancias químicas volátile ...
- Aunar competencias europeas en el desarrollo de baterías de nueva generación ...
- Un robot con aspecto de hada vuela gracias a la fuerza del viento y la luz
- La fotosíntesis artificial utiliza la luz solar para fabricar plástico biodegradable
- Los tejidos y la química del calamar se combinan para crear hidrogeles versátiles
- La inferencia bayesiana reduce drásticamente el tiempo de análisis de fluorescencia de rayos X.
- Un software de simulación automatizada crea un mapa mundial de las propiedades de los polímeros
- Las nanoantenas dirigen un futuro brillante: Los LED blancos pronto podrían ser destronados