Estreno del diodo superconductor sin campo magnético externo
Material prometedor: el grafeno
Los superconductores son la clave del flujo de corriente sin pérdidas. Sin embargo, la realización de diodos superconductores se ha convertido recientemente en un importante tema de investigación fundamental. Un equipo internacional de investigación en el que participa el físico teórico Mathias Scheurer, de la Universidad de Innsbruck, ha logrado un hito: la realización de un efecto de diodo superconductor sin campo magnético externo, lo que demuestra la hipótesis de que la superconductividad y el magnetismo coexisten. Informan de ello en Nature Physics.

Grafeno tricapa
Mathias Scheurer
Se habla de efecto de diodo superconductor cuando un material se comporta como un superconductor en una dirección del flujo de corriente y como una resistencia en la otra. A diferencia de un diodo convencional, un diodo superconductor de este tipo presenta una resistencia completamente desvanecida y, por tanto, no tiene pérdidas en la dirección de avance. Esto podría constituir la base de la futura electrónica cuántica sin pérdidas. Los físicos lograron crear por primera vez el efecto de diodo hace unos dos años, pero con algunas limitaciones fundamentales. "En aquel momento, el efecto era muy débil y se generaba mediante un campo magnético externo, lo cual es muy desventajoso en posibles aplicaciones tecnológicas", explica Mathias Scheurer, del Instituto de Física Teórica de la Universidad de Innsbruck. Los nuevos experimentos realizados por físicos experimentales de la Universidad estadounidense de Brown, descritos en el número actual de Nature Physics, no requieren un campo magnético externo. Además de las mencionadas ventajas de aplicación, los experimentos confirman una tesis previamente teorizada por Mathias Scheurer: A saber, que la superconductividad y el magnetismo coexisten en un sistema formado por tres capas de grafeno retorcidas entre sí. Así, el sistema genera prácticamente su propio campo magnético interno, creando un efecto de diodo. "El efecto diodo observado por los colegas de la Universidad de Brown fue además muy fuerte. Además, la dirección del diodo puede invertirse con un simple campo eléctrico. Todo ello hace que el grafeno tricapa sea una plataforma muy prometedora para el efecto de diodo superconductor", aclara Mathias Scheurer, que recibió este año una ERC Starting Grant por su investigación sobre materiales bidimensionales, especialmente el grafeno.
Material prometedor: el grafeno
El efecto diodo descrito en Nature Physics también se produjo con grafeno, un material formado por una sola capa de átomos de carbono dispuestos en forma de panal. Al apilar varias capas de grafeno se obtienen propiedades completamente nuevas, como la capacidad de tres capas de grafeno retorcidas entre sí para conducir la corriente eléctrica sin pérdidas. El hecho de que exista un efecto de diodo superconductor sin un campo magnético externo en este sistema tiene grandes implicaciones para el estudio del complejo comportamiento físico del grafeno tricapa retorcido, ya que demuestra la coexistencia de la superconductividad y el magnetismo. Esto demuestra que el efecto diodo no sólo tiene relevancia tecnológica, sino que también tiene el potencial de mejorar nuestra comprensión de los procesos fundamentales en la física de muchos cuerpos. La base teórica de esto ya se ha publicado en otra publicación de alto nivel.
Nota: Este artículo ha sido traducido utilizando un sistema informático sin intervención humana. LUMITOS ofrece estas traducciones automáticas para presentar una gama más amplia de noticias de actualidad. Como este artículo ha sido traducido con traducción automática, es posible que contenga errores de vocabulario, sintaxis o gramática. El artículo original en Inglés se puede encontrar aquí.
Publicación original
Publicación original
Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Jiang-Xiazi Lin, Phum Siriviboon, Harley D. Scammell, Song Liu, Daniel Rhodes, K. Watanabe, T. Taniguchi, James Hone, Mathias S. Scheurer, J.I.A. Li in: Nature Physics, August 2022.
Temas
Organizaciones
Más noticias del departamento ciencias

Reciba la química en su bandeja de entrada
Al enviar el formulario, se muestra usted de acuerdo con que LUMITOS AG le envíe por correo electrónico el boletín o boletines seleccionados anteriormente. Sus datos no se facilitarán a terceros. El almacenamiento y el procesamiento de sus datos se realiza sobre la base de nuestra política de protección de datos. LUMITOS puede ponerse en contacto con usted por correo electrónico a efectos publicitarios o de investigación de mercado y opinión. Puede revocar en todo momento su consentimiento sin efecto retroactivo y sin necesidad de indicar los motivos informando por correo postal a LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlín (Alemania) o por correo electrónico a revoke@lumitos.com. Además, en cada correo electrónico se incluye un enlace para anular la suscripción al boletín informativo correspondiente.
Noticias más leídas
Más noticias de nuestros otros portales
Contenido visto recientemente

Plantas como fábricas de antifúngicos - El trabajo demuestra que las plantas pueden ser biofactorías adecuadas para desarrollar proteínas antifúngicas

Euroquímica - Dosríus, España
Científicos iberoamericanos descifran el genoma de la judía o frijol mesoamericano - Un equipo de científicos iberoamericano descifra el genoma de la judía mesoamericana, o judía común, coincidiendo con la celebración del Año Internacional de los Legumbres

Electricidad de amoníaco respetuosa con el clima - La electricidad y el calor se generan en un único sistema compacto, sin emisiones de CO2 ni otros subproductos nocivos.
Resultados Almirall primer semestre 2016 - Crecimiento en Ingresos Totales y Ventas Netas liderado por Dermatología

Thermo Fisher Scientific Messtechnik GmbH - Erlangen, Alemania

Cómo influye la rugosidad superficial en la adherencia de materiales blandos - Un equipo de investigadores descubre un mecanismo universal que provoca histéresis de adherencia en materiales blandos

Premio Nobel de Química 2019 por el desarrollo de las baterías de iones de litio

Metall-Chemie GmbH & Co. KG - Hamburg, Alemania
