Un equipo internacional de investigación dirigido por el Departamento de Materia Cuántica Microestructurada del MPSD informa de la primera observación de transporte quiral conmutable en un cristal estructuralmente aciral, el superconductor Kagome CsV₃Sb₅. Su trabajo se ha publicado en Natur ... más
Fotografiadas 'in fraganti' las sustancias intermedias de una reacción química
Investigadores de la UPV/EHU captan por primera vez la imagen de todas las etapas de una compleja reacción orgánica y resuelven los mecanismos que la explican
Uno de los objetivos que durante muchísimo tiempo han perseguido los químicos ha sido ser capaces de poder seguir y visualizar directamente cómo cambian las estructuras de las moléculas cuando experimentan complejas transformaciones químicas. Los intermedios de reacción - sustancias muy inestables que se forman en las diferentes etapas de una reacción, antes de obtener los productos - son extremadamente difíciles de identificar y caracterizar, debido a su corta vida. Conocer la estructura de estas especies intermedias puede ser de gran ayuda para entender los mecanismos de la reacción, y eso, además, puede generar un gran impacto en la industria química, la ciencia de materiales, la nanotecnología, la biología y la medicina.
Un equipo internacional de investigadores liderados por Felix R. Fischer y Michael F. Crommie (Universidad de California en Berkeley y Lawrence Berkeley National Laboratory) y por Ángel Rubio (catedrático de la UPV/EHU, líder del grupo de investigación Nano-Bio Spectroscopy Group de la UPV/EHU y director del Max Planck Institute for the Structure and Dynamics of Matter de Hamburgo) ha captado la imagen y ha resuelto la configuración de los enlaces de los reactivos, de los intermedios y de los productos finales de una compleja reacción orgánica, a nivel de una sola molécula. Nature Chemistry ha publicado la investigación en su último número.
El equipo ha conseguido las imágenes de las estructuras químicas asociadas a diferentes etapas de la reacción en cascada, de múltiples etapas, de moléculas de enediina sobre una superficie de plata, utilizando un microscopio de fuerza atómica sin contacto (nc-AFM, por sus siglas en inglés) con una sonda especialmente sensible: utiliza una aguja muy fina que puede detectar las más pequeñas protuberancias a escala atómica (de una manera similar a la lectura en Braille), ya que se adsorbe una molécula de monóxido de carbono que actúa como "dedo" en la lectura, para aumentar su resolución.
La identificación precisa de la configuración de enlaces de las especies intermedias "ha permitido determinar la compleja secuencia de transformaciones químicas a lo largo del mecanismo de reacción, partiendo de los reactivos, pasando por los intermedios y acabando en los productos finales - explica Ángel Rubio, catedrático de la UPV/EHU -, y, a su vez, ha permitido resolver los mecanismos microscópicos que suceden en este comportamiento dinámico tan complejo".
Estabilización de intermedios
Mediante la combinación de los últimos avances en cálculo numérico y los modelos analíticos clásicos que describen la cinética de reacciones químicas secuenciales - área que estudia la rapidez de las reacciones y los eventos moleculares que suceden en ella -, ha quedado probado que, para explicar la estabilización de las sustancias intermedias, no es suficiente considerar la energía potencial de las mismas, sino que es fundamental tener en cuenta la disipación de energía y los cambios de entropía molecular - la entropía mide el grado de organización de un sistema -. La superficie, y en particular la interacción de las sustancias intermedias extremadamente inestables con la superficie, juega un papel fundamental tanto en la entropía como en la disipación de energía, que marca una gran diferencia entre las reacciones soportadas en una superficie y las reacciones en fase gaseosa o en disolución.
Esta detallada comprensión, conseguida gracias a la sinergia entre la visualización de las reacciones químicas de una molécula y los últimos avances en modelización computacional, "constituye un hito fundamental en el análisis de las reacciones químicas", concreta. De hecho, con todo ello, "se han superado muchas de las limitaciones de las técnicas espectroscópicas convencionales - afirma -, y se ha conseguido una imagen a escala atómica, sin precedentes, de los mecanismos de reacción, las fuerzas impulsoras y la cinética". Según explica Rubio, todo este nuevo conocimiento puede abrir incontables nuevos campos, nunca explorados hasta el momento: futuros diseños y optimizaciones de sistemas catalíticos heterogéneos, desarrollo de nuevas herramientas de síntesis aplicadas a la nanotecnología del carbono, así como aplicaciones en ciencias de materiales y bioquímicas.
Universidad del País Vasco / Euskal Herriko Unibertsitatea
- química
- Euskal Herriko Unib…
- Lawrence Berkeley N…
- UC Berkeley
- MPI für Struktur un…
- estructuras
- reacciones químicas
-
Noticias
Cuando una banda se aplana: La búsqueda de la planitud en los materiales
El primer catálogo mundial de materiales de banda plana, publicado en la revista Nature, podría reducir la serendipia en la búsqueda de nuevos materiales con propiedades cuánticas exóticas, como el magnetismo y la superconductividad, con aplicaciones en dispositivos de memoria o en el trans ... más
La combinación de dos proteínas tiene un efecto regenerador en el Parkinson
El Parkinson a un trastorno motor, originado por la pérdida de neuronas dopaminérgicas en la sustancia negra del cerebro. Estas neuronas son las células nerviosas que producen dopamina, un neurotransmisor que tiene un papel central en la modulación de los movimientos involuntarios. La inves ... más
-
Noticias
Los plásticos de polietileno -en particular, la omnipresente bolsa de plástico que asola el paisaje- son notoriamente difíciles de reciclar. Son resistentes y difíciles de descomponer, y si se reciclan, se funden en un guiso de polímeros útil sobre todo para cubiertas y otros productos de p ... más
Un material sencillo y barato para la captura de carbono, quizás de los tubos de escape
Utilizando un polímero barato llamado melamina -el principal componente de Formica-, los químicos han creado una forma barata, fácil y energéticamente eficiente de capturar el dióxido de carbono de las chimeneas, un objetivo clave para Estados Unidos y otros países en su intento de reducir ... más
Un nuevo proceso permite imprimir en 3D componentes pequeños y complejos de vidrio en pocos minutos
Debido a su extraordinaria transparencia y a su estabilidad en contacto con el calor o los productos químicos, el vidrio es importante para muchas aplicaciones de alta tecnología. Sin embargo, los procesos convencionales para dar forma al vidrio suelen ser tediosos, consumen mucha energía y ... más
-
Noticias
La conversión del petróleo en combustibles implica una química rudimentaria inventada por el ser humano en el siglo XIX. Mientras tanto, las bacterias llevan miles de millones de años produciendo moléculas energéticas basadas en el carbono. ¿Cuál de las dos es mejor? Conscientes de las vent ... más
Cristalografía para los cristales inadaptados
Francis Crick, famoso por haber descubierto la forma del ADN, dijo una vez: "Si quieres entender la función, estudia la estructura". Muchas décadas después, esta frase sigue siendo un principio de la biología, la química y la ciencia de los materiales. Un avance clave en la búsqueda de la e ... más
Una nueva técnica abre el camino a las perovskitas perfectas
Un nuevo e interesante material solar llamado perovskita de haluro orgánico podría ayudar algún día a Estados Unidos a alcanzar sus ambiciones solares y a descarbonizar la red eléctrica. Mil veces más finos que el silicio, los materiales solares de perovskita pueden ajustarse para responder ... más
-
Noticias
Muchas investigaciones recientes se han centrado en los materiales "topológicos", un curioso tipo de sólidos que se salen de la clasificación estándar de aislantes y conductores. Mientras que su masa es aislante, estas fases se caracterizan por canales conductores de la electricidad que apa ... más
Por qué las cavidades ópticas frenan la velocidad de las reacciones químicas
Los procesos químicos nos rodean. Desde nuevos materiales hasta medicamentos o productos plásticos más eficaces, las reacciones químicas desempeñan un papel fundamental en el diseño de las cosas que usamos a diario. Los científicos buscan constantemente mejores formas de controlar estas rea ... más
Un equipo internacional de investigación dirigido por el Departamento de Materia Cuántica Microestructurada del MPSD informa de la primera observación de transporte quiral conmutable en un cristal estructuralmente aciral, el superconductor Kagome CsV₃Sb₅. Su trabajo se ha publicado en Natur ... más
- 1Un nuevo método de refrigeración
- 2Rompiendo el amoníaco: Un nuevo catalizador para generar hidrógeno a partir de amoníaco a bajas temperaturas
- 3Los átomos de un cristal saltan de forma similar a las partículas cósmicas
- 4Un sistema solar convierte el plástico y los gases de efecto invernadero en combustibles sostenibles
- 5De la carretera al plato: la lechuga absorbe aditivos tóxicos del desgaste de los neumáticos
- 6La electroquímica convierte el carbono en moléculas útiles
- 7Convertir minas abandonadas en baterías
- 8Uso del aprendizaje automático para mejorar la evaluación de la toxicidad de las sustancias químicas
- 9Convertir los residuos plásticos en un valioso aditivo para el suelo
- 10Una nueva forma de descontaminar el agua y el gas con una nueva zeolita de poro extragrande 3D
- Una nueva forma de descontaminar el agua y el gas con una nueva zeolita de poro extragrande 3D
- Los microplásticos depositados en los fondos marinos se han triplicado en 20 años
- Una nueva técnica de imagen de rayos X para estudiar las transiciones de fase de los materiales cuánticos
- Nuevos enfoques al misterio de por qué el hielo resbala
- LAUDA inaugura una nueva planta en Terrassa, España