Mitocondria



 


Las mitocondrias son orgánulos, presentes en prácticamente todas las células eucariotas, encargados de suministrar la mayor parte de la energía necesaria para la actividad celular; actúan por tanto, como centrales energéticas de la célula y sintetizan ATP por medio de la fosforilación oxidativa. Realizan, además, muchas otras reacciones del metabolismo intermediario, como la síntesis de algunos coenzimas. Es notable la enorme diversidad, morfológica y metabólica, que puede presentar en distintos organismos.

Tabla de contenidos

Estructura y composición

 

La morfología de la mitocondria es difícil de describir puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan. Normalmente se las representa en forma alargada. Su tamaño oscila entre 0,5 y 1 μm de diámetro y hasta 7 μ de longitud.[1] Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.

Las mitocondrias están rodeadas de dos membranas claramente diferentes en sus funciones y actividades enzimáticas, que separan tres espacios: el citosol, el espacio intermembrana y la matriz mitocondrial.

Membrana externa

Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 10.000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70% de proteínas.

Membrana interna

La membrana interna contiene más proteínas, carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas. Esta membrana forma invaginaciones o pliegues llamadas crestas mitocondriales, que aumentan mucho la superficie para el asentamiento de dichas enzimas. En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal. En la composición de la membrana interna hay una gran abundancia de proteínas (un 80%), que son además exclusivas de este orgánulo:

  1. La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles: el complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN), el complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona; el complejo III o citocromo bc1 que cede electrones al citocromo c y el complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.
  2. Un complejo enzimático, el canal de H+ ATP-sintasa que cataliza la síntesis de ATP (fosforilación oxidativa).
  3. Proteínas transportadoras que permiten el paso de iones y moléculas a su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua.

Espacio intermembrana

Entre ambas membranas queda delimitado un espacio intermembrana está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversos enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato quinasa o la creatina quinasa.

Matriz mitocondrial

La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 70S similares a los de bacterias, llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.

Función

Del apartado anterior se deduce que la principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.

Origen

La científica estadounidense Lynn Margulis, junto con otros científicos, recuperó en torno a 1980 una antigua hipótesis, reformulándola como teoría endosimbiótica. Según esta versión actualizada, hace unos 1.500 millones de años, una célula procariota capaz de obtener energía de los nutrientes orgánicos empleando el oxígeno molecular como oxidante, se fusionó en un momento de la evolución con otra célula procariota o eucariota primitiva al ser fagocitada sin ser inmediatamente digerida, un fenómeno frecuentemente observado. De esta manera se produjo una simbiosis permanente entre ambos tipos de seres: la procariota fagocitada proporcionaba energía, especialmente en forma de ATP y la célula hospedadora ofrecía un medio estable y rico en nutrientes a la otra. Este mutuo beneficio hizo que la célula invasora llegara a formar parte del organismo mayor, acabando por convertirse en parte de ella: la mitocondria. Otro factor que apoya esta teoría es que las bacterias y las mitocondrias tienen mucho en común, tales como el tamaño, la estructura, componentes de su membrana y la forma en que producen energía, etc.

Esta hipótesis tiene entre sus fundamentos la evidencia de que las mitocondrias poseen su propio ADN y está recubierta por su propia membrana. Otra evidencia que sostiene esta hipótesis es que el código genético del ADN mitocondrial no suele ser el mismo que el código genético del ADN nuclear.[2] A lo largo de la historia común la mayor parte de los genes mitocondriales han sido transferidos al núcleo, de tal manera que la mitocondria no es viable fuera de la célula huésped y ésta no suele serlo sin mitocondrias.

Enfermedades mitocondriales

Artículo principal: Enfermedad mitocondrial

El ADN mitocondrial contiene información genética para 13 proteínas mitocondriales y algunos ARN;[1] no obstante, la mayoría de las proteínas de las mitocondrias proceden de genes localizados en el ADN del núcleo celular y que son sintetizadas por ribosomas libres del citosol y luego importadas por el orgánulo. Se han descrito más de 150 enfermedades mitocondriales, como la enfermedad de Luft o la neuropatía óptica hereditaria de Leber. Tanto las mutaciones del ADN mitocondrial como del ADN nuclear dan lugar a enfermedades genéticas mitocondriales, que originan un mal funcionamiento de procesos que se desarrollan en las mitocondrias, como alteraciones de enzimas, ARN, componentes de la cadena de transporte de electrones y sistemas de transporte de la membrana interna; muchas de ellas afectan al músculo esquelético y al sistema nervioso central.

El ADN mitocondrial puede dañarse con los radicales libres formados en la mitocondria; así, enfermedades degenerativas relacionadas con el envejecimiento, como la enfermedad de Parkinson, la enfermedad de Alzheimer y las cardiopatías pueden tener relaciones con lesiones mitocondriales.[1]

Mitocondrias en la cultura popular

La ciencia ficción ha utilizado por lo menos en una ocasión esta hipótesis como parte fundamental de la trama de una de sus historias; en Star Wars ('La guerra de las galaxias') los midiclorianos vendrían a adaptarse muy bien como la figura de las mitocondrias, que son descritos como seres vivos que forman parte de todas las células vivas y que les dan su energía. De manera muy precisa, estos personajes de la ciencia ficción podrían describir el papel de la mitocondria en la célula. La película da una teoría interesante sobre el papel de las mitocondrias que va más allá del que le ha concebido la ciencia: supone que las mitocondrias aún conservan una identidad propia y que miles de millones de años de evolución no habrían logrado quitársela. La novela japonesa Parasite Eve, de Hideaki Senna, también juega, en la trama central de su argumento, con la idea de la independencia mitocondrial.

Referencias

  1. a b c Devlin, T. M. 2004. Bioquímica, 4ª edición. Reverté, Barcelona. ISBN 84-291-7208-4
  2. Genetic Code of mitochondria - Mitogenome.com

Enlaces externos

 
Este articulo se basa en el articulo Mitocondria publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.