El récord mundial actual de células solares en tándem formadas por una célula inferior de silicio y una superior de perovskita vuelve a estar en HZB. La nueva célula solar en tándem convierte el 32,5% de la radiación solar incidente en energía eléctrica. El instituto certificador European S ... más
Los nanodiamantes pueden activarse como fotocatalizadores con la luz solar
Estos materiales baratos podrían ser la clave para seguir transformando el CO₂ en valiosos hidrocarburos con la luz solar en el futuro
Los materiales de nanodiamante tienen potencial como fotocatalizadores de bajo coste. Pero hasta ahora, estas nanopartículas de carbono necesitaban una luz ultravioleta de alta energía para ser activas. Por ello, el consorcio DIACAT ha producido y analizado variaciones de materiales de nanodiamante. El trabajo lo demuestra: Si la superficie de las nanopartículas está ocupada por suficientes átomos de hidrógeno, incluso la energía más débil de la luz solar azul es suficiente para la excitación. Los futuros fotocatalizadores basados en nanodiamantes podrían ser capaces de convertir elCO2 o el N2 en hidrocarburos o amoníaco con la luz solar.
Los materiales de nanodiamante tienen un gran potencial como catalizadores. Las baratas nanopartículas de carbono ofrecen superficies muy grandes en comparación con su volumen. Sin embargo, para acelerar catalíticamente las reacciones químicas en un medio acuoso, los electrones del catalizador tienen que pasar a la solvatación y esto requiere en los materiales de diamante puro una luz ultravioleta de alta energía para su excitación. Por otro lado, los tamaños extremadamente pequeños de las nanopartículas permiten nuevos estados moleculares en las superficies de los nanodiamantes que también absorben la luz visible.
Superficies diferentes
Como parte del proyecto DIACAT, un equipo del HZB ha investigado diferentes variantes de materiales de nanodiamante durante la excitación con luz y ha analizado los procesos con una resolución temporal extremadamente alta. El grupo del Dr. Jean-Charles Arnault, del CEA (Francia), y la profesora Anke Krueger, ahora en la Universidad de Stuttgart, produjeron muestras de nanodiamante con distintas químicas de superficie. Las nanopartículas diferían en sus superficies, que contenían diferentes cantidades de átomos de hidrógeno u oxígeno.
El hidrógeno ayuda, y también el carbono fullereno
"El hidrógeno en las superficies facilita la emisión de electrones", explica el Dr. Tristan Petit, experto en nanodiamante de HZB. "Entre las muchas variantes, descubrimos que una determinada combinación de hidrógeno y carbono tipo fullereno en la superficie de las nanopartículas es ideal", afirma.
Excitaciones láser ultrarrápidas
En el Laserlab de HZB estudiaron dispersiones acuosas de nanodiamante con diferentes terminaciones superficiales, como hidrógeno, -OH o -COOH, tras excitarlas con pulsos láser ultrarrápidos. "Pudimos medir experimentalmente cómo se comporta el perfil de absorción con diferentes longitudes de onda de excitación en el rango UV a 225 nm y con luz azul en el rango visible a 400 nm", explica el Dr. Christoph Merschjann, del HZB.
Picosegundos después de la excitación
"Queríamos averiguar qué ocurre en los primeros picosegundos cruciales tras la excitación con luz, porque ese es el momento en el que un electrón abandona la superficie y se adentra en el agua", dice Merschjann. El equipo de teoría dirigido por la Dra. Annika Bande contribuyó con la modelización con la teoría del funcional de la densidad para interpretar los espectros. Los datos mostraron, como se esperaba, que la luz ultravioleta lleva los electrones a la solución en todas las muestras, pero en el caso de las que tenían carbono tipo fullereno en su superficie, esto también se consiguió con luz visible.
La luz azul puede funcionar
"En este trabajo demostramos -hasta donde sabemos, por primera vez- que la emisión de electrones disueltos a partir de nanodiamantes en agua es posible con luz visible", resume Petit los resultados. Se trata de un paso decisivo hacia la apertura de los materiales de nanodiamante como fotocatalizadores. Estos materiales, baratos y sin metales, podrían ser la clave para seguir transformandoel CO2 en valiosos hidrocarburos con la luz solar en el futuro, o incluso para convertir el N2 en amoníaco.
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
- fotocatalizadores
- nanopartículas
- nanodiamantes
-
Noticias
Nueva óptica monocromadora para rayos X tiernos
Hasta ahora, ha sido extremadamente tedioso realizar mediciones con alta sensibilidad y alta resolución espacial utilizando luz de rayos X en el tierno rango de energía de 1,5 - 5,0 keV. Sin embargo, esta luz de rayos X es ideal para investigar materiales energéticos como baterías o cataliz ... más
La tomografía muestra el alto potencial de las baterías de estado sólido de sulfuro de cobre
Las baterías de estado sólido permiten densidades de energía aún mayores que las de iones de litio con una gran seguridad. Un equipo dirigido por el profesor Philipp Adelhelm y el doctor Ingo Manke consiguió observar una batería de estado sólido durante su carga y descarga y crear imágenes ... más
- 1Un nuevo método de refrigeración
- 2Rompiendo el amoníaco: Un nuevo catalizador para generar hidrógeno a partir de amoníaco a bajas temperaturas
- 3Un sistema solar convierte el plástico y los gases de efecto invernadero en combustibles sostenibles
- 4Los átomos de un cristal saltan de forma similar a las partículas cósmicas
- 5De la carretera al plato: la lechuga absorbe aditivos tóxicos del desgaste de los neumáticos
- 6La electroquímica convierte el carbono en moléculas útiles
- 7Convertir minas abandonadas en baterías
- 8Uso del aprendizaje automático para mejorar la evaluación de la toxicidad de las sustancias químicas
- 9Convertir los residuos plásticos en un valioso aditivo para el suelo
- 10El extracto de una especia común de cocina podría ser la clave para conseguir pilas de combustible más ecológicas y eficientes
- Elegantes experimentos con la luz
- Sartorius con un claro crecimiento de dos dígitos en el ejercicio 2022
- Descubren un nuevo método para controlar las reacciones químicas
- OQ Chemicals invierte en ampliación de capacidad para apoyar el mercado de ácidos carboxílicos
- Proyecto PlasCO₂: El gas de efecto invernadero transformado en materia prima