Citoesqueleto



El citoesqueleto es un entramado tridimensional que provee el soporte interno para las células, ancla las estructuras internas de la misma e interviene en los fenómenos de movimiento celular y en su división. En las células eucariotas consta de microfilamentos, filamentos intermedios y microtúbulos, mientras que en las procariotas está constituido principalmente por las proteínas estructurales FtsZ y MreB. El citoesqueleto es una estructura dinámica que mantiene la forma de la célula, facilita la movilidad celular (usando estructuras como los cilios y los flagelos), y desempeña un importante papel tanto en el transporte intracelular (por ejemplo, los movimientos de vesículas y orgánulos) y en la división celular.

Con anterioridad al descubrimiento del citoesqueleto a principios de los años 80 por el biólogo Keith Porter, el Dr. Donald Ingber consideró que desde un punto de vista mecánico, la célula se comportaba de manera similar a estructuras arquitectónicas denominadas estructuras de tensegridad.

Conocimientos adicionales recomendados

Tabla de contenidos

El citoesqueleto eucariota

Las células eucariotas tienen tres tipos de filamentos citoesqueléticos: microfilamentos, filamentos intermedios y microtúbulos.

 

Microfilamentos (actina y miosina)

Artículo principal: Microfilamento

Los microfilamentos tienen un diámetro de unos 7 nm ó 5 nm. Están formadas por una proteína globular llamada actina que puede presentarse de dos formas:

  • Actina no polimerizada (G actina): la actina se encuentra asociada a la profilina que evita su polimerización. Representa la mitad de la actina de la célula y es utilizada para polimerizar microfilamentos cuando es necesario.
  • Actina polimerizada (F actina): es una doble hélice dextrógira de dos hebras de actina no polimerizada. Esta actina se puede encontrar asociada a otras proteínas:
    • Proteínas estructurales: que permiten la unión de los filamentos de actina
    • Proteínas reguladoras: la más importante es la miosina que permite la contracción muscular al permitir que la actina se desplace sobre ella.

Las funciones de los microfilamentos de actina son la contracción muscular, la formación de pseudópodos, el mantenimiento de la morfología celular y, en la citocinesis de células animales, forma un anillo contráctil que divide la célula en dos.

 

Filamentos intermedios

Artículo principal: Filamentos intermedios

Son filamentos de proteína fibrosa de unos 12 nm de diámetro, son los componentes del citoesqueleto más estables, dando soporte a los orgánulos (por sus fuertes enlaces), y heterogéneos. Las proteínas que conforman estos filamentos, la citoqueratina, vimentina, neurofilamentos, desmina y la proteína fibrilar acídica de la glia, dependen del tejido en el que se hallen. Su función principal es la organización de la estructura tridimensional interna de la célula (por ejemplo, forman parte de la envuelta nuclear y de los sarcómeros). También participan en algunas uniones intercelulares (desmosomas).

 

Microtúbulos

Artículo principal: Microtúbulo

Los microtúbulos son estructuras tubulares de 25 nm de diámetro que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el Citoplasma. Se pueden polimerizar y despolimerizar según las necesidades de la célula. Se hallan en las células eucariotas y están formados por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Cada microtúbulo está compuesto de 13 protofilamentos formados por los dímeros de tubulina. Intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis), ya que forman el huso mitótico). Además, constituyen la estructura interna de los cilios y los flagelos. Los microtúbulos son más flexibles pero más duros que la actina.

El citoesqueleto procariota

 

Anteriormente se creía que el citoesqueleto era una característica única de las células eucarióticas, pero desde entonces se han encontrado homólogos bacterianos a las principales proteínas del citoesqueleto eucariota.[2] A pesar de que las relaciones evolutivas son tan distantes que no se pueden inferir analogías a partir de las secuencias de aminoácidos, la similitud de la estructura tridimendional, las funciones en el mantenimiento de la forma y en la polaridad de las células proporcionan pruebas sólidas de que los citoesqueletos eucariotas y procariotas son realmente homólogos.[3]

FtsZ

Artículo principal: FtsZ

FtsZ fue la primera proteína del citoesqueleto procariota en ser identificada. Al igual que la tubulina, FtsZ forma filamentos en presencia de GTP, pero estos filamentos no se agrupan en microtúbulos. Durante la división celular, FtsZ es la primera proteína que se desplaza al lugar de la división y es esencial para organizar a las proteínas que sintetizan la nueva pared celular en las células que se dividen.

MreB y ParM

Artículo principal: MreB

Las proteínas procariotas similares a la actina, tales como MreB, están involucradas en el mantenimiento de la forma celular. Estas proteínas forman una red helicoidal debajo de la membrana celular que guía a las proteínas que participan en la biosíntesis de la pared celular. Todas las bacterias no esféricas tienen genes que codifican este tipo de proteínas.

Algunos plásmidos codifican un sistema de particionado que envuelve una proteína similar a la actina, denominada ParM. Los filamentos de ParM exhiben una inestabilidad dinámica y pueden particionar los plásmidos de ADN durante la división celular en un mecanismo análogo al utilizado por los microtúbulos durante mitosis de los eucariotas.

Crescentina

La bacteria Caulobacter crescentus contiene una tercera proteína, crescentina, que está relacionada con los filamentos intermedios de las células eucarióticas. La crescentina también participa en el mantenimiento de la forma celular, pero el mecanismo actualmente es poco claro.

Referencias

  1. Gitai, Z. (2005). "The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture". Cell 120 (5): 577-586. DOI:10.1016/j.cell.2005.02.026.
  2. Shih YL, Rothfield L (2006). "The bacterial cytoskeleton". Microbiol. Mol. Biol. Rev. 70 (3): 729–54. DOI:10.1128/MMBR.00017-06.
  3. Michie KA, Löwe J (2006). "Dynamic filaments of the bacterial cytoskeleton". Annu. Rev. Biochem. 75: 467–92. DOI:10.1146/annurev.biochem.75.103004.142452.
 
Este articulo se basa en el articulo Citoesqueleto publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.