Un equipo internacional de investigación dirigido por el Departamento de Materia Cuántica Microestructurada del MPSD informa de la primera observación de transporte quiral conmutable en un cristal estructuralmente aciral, el superconductor Kagome CsV₃Sb₅. Su trabajo se ha publicado en Natur ... más
Cuando una banda se aplana: La búsqueda de la planitud en los materiales
Una colaboración internacional crea un catálogo de materiales que podrían influir en las tecnologías cuánticas
El primer catálogo mundial de materiales de banda plana, publicado en la revista Nature, podría reducir la serendipia en la búsqueda de nuevos materiales con propiedades cuánticas exóticas, como el magnetismo y la superconductividad, con aplicaciones en dispositivos de memoria o en el transporte de energía sin disipación de largo alcance.
Encontrar los ingredientes adecuados para crear materiales con propiedades cuánticas exóticas ha sido una quimera para los científicos experimentales, debido a las infinitas combinaciones posibles de los distintos elementos que hay que sintetizar.
A partir de ahora, la creación de tales materiales podría tener los ojos menos vendados gracias a una colaboración internacional liderada por Andrei Bernevig, profesor visitante de Ikerbasque en el Donostia International Physics Center (DIPC) y catedrático de la Universidad de Princeton, y Nicolas Regnault, de la Universidad de Princeton y de la Escuela Normal Superior de París, CNRS, que cuenta con la participación de Luis Elcoro de la Universidad del País Vasco (UPV/EHU).
El equipo realizó una búsqueda sistemática de posibles candidatos en un enorme pajar de 55.000 materiales. El proceso de eliminación comenzó con la identificación de los llamados materiales de banda plana, es decir, estados electrónicos con energía cinética constante. Por tanto, en una banda plana el comportamiento de los electrones se rige principalmente por las interacciones con otros electrones. Sin embargo, los investigadores se dieron cuenta de que la planitud no es el único requisito, ya que cuando los electrones están demasiado unidos a los átomos, incluso en una banda plana, no son capaces de moverse y crear estados interesantes de la materia. "Se quiere que los electrones se vean unos a otros, algo que se puede conseguir asegurando que se extiendan en el espacio. Eso es exactamente lo que aportan las bandas topológicas", dice Nicolas Regnault.
La topología desempeña un papel crucial en la física moderna de la materia condensada, como sugieren los tres premios Nobel de 1985, 1997 y 2016. Obliga a extender algunas funciones de onda cuánticas haciéndolas insensibles a perturbaciones locales como las impurezas. Podría imponer la cuantificación de algunas propiedades físicas, como la resistencia, o conducir a estados superficiales perfectamente conductores.
Afortunadamente, el equipo ha estado a la vanguardia de la caracterización de las propiedades topológicas de las bandas a través de su enfoque conocido como "química cuántica topológica", lo que les ha proporcionado una gran base de datos de materiales, así como las herramientas teóricas para buscar bandas topológicas planas.
Empleando herramientas que van desde métodos analíticos hasta búsquedas por fuerza bruta, el equipo encontró todos los materiales de banda plana conocidos actualmente en la naturaleza. Este catálogo de materiales de banda plana está disponible en línea https://www.topologicalquantumchemistry.fr/flatbands con su propio motor de búsqueda. "La comunidad puede ahora buscar bandas topológicas planas en los materiales. Hemos encontrado, de entre 55.000 materiales, unos 700 que presentan lo que podrían ser bandas planas interesantes", afirma Yuanfeng Xu, de la Universidad de Princeton y del Instituto Max Planck de Física de Microestructuras, uno de los dos autores principales del estudio. "Nos aseguramos de que los materiales que promovemos sean candidatos prometedores para la síntesis química", subraya Leslie Schoop, del departamento de química de Princeton. El equipo ha clasificado además las propiedades topológicas de estas bandas, descubriendo qué tipo de electrones deslocalizados albergan.
Ahora que se ha completado este amplio catálogo, el equipo comenzará a cultivar los materiales predichos para descubrir experimentalmente la miríada potencial de nuevos estados de interacción. "Ahora que sabemos dónde buscar, tenemos que cultivar estos materiales", dice Claudia Felser, del Instituto Max Planck de Física Química de los Sólidos. "Tenemos un equipo de experimentadores de ensueño trabajando con nosotros. Están ansiosos por medir las propiedades físicas de estos candidatos y ver qué emocionantes fenómenos cuánticos surgen".
El catálogo de bandas planas, publicado en Nature el 30 de marzo de 2022, representa el final de años de investigación del equipo. "Mucha gente, y muchas instituciones de subvención y universidades a las que presentamos el proyecto dijeron que esto era demasiado difícil y que nunca podría hacerse. Nos ha costado algunos años, pero lo hemos conseguido", afirma Andrei Bernevig.
La publicación de este catálogo no sólo reducirá la serendipia en la búsqueda de nuevos materiales, sino que permitirá realizar grandes búsquedas de compuestos con propiedades exóticas, como el magnetismo y la superconductividad, con aplicaciones en dispositivos de memoria o en el transporte de energía sin disipación de largo alcance.
- superconductividad
- superconductividad
- electrones
- bancos de datos
-
Noticias
La interacción entre Topología y Magnetismo tiene un brillante futuro
El nuevo artículo de revisión sobre materiales topológicos magnéticos de Andrei Bernevig, de la Universidad de Princeton (EE.UU.), Haim Beidenkopf, del Instituto de Ciencias Weizmann (Israel), y Claudia Felser, del Instituto Max Planck de Física Química de los Sólidos (Dresde, Alemania), in ... más
Investigadores del Instituto Max Planck de Física Química de los Sólidos de Dresde (Alemania), junto con colaboradores de la Universidad Estatal de Ohio y la Universidad de Cincinnati, han descubierto, por primera vez, un efecto termoeléctrico gigante en un antiferromagneto. El estudio publ ... más
-
Noticias
En la simulación de cómo se congela el agua, la inteligencia artificial rompe el hielo
Un equipo de la Universidad de Princeton ha simulado con precisión los pasos iniciales de la formación del hielo aplicando la inteligencia artificial (IA) a la resolución de las ecuaciones que rigen el comportamiento cuántico de los átomos y moléculas individuales. La simulación resultante ... más
Los investigadores miden la ruptura de un solo enlace químico
El equipo utilizó un microscopio de fuerza atómica (AFM) de alta resolución que funcionaba en un entorno controlado en el Centro de Imágenes y Análisis de Princeton. La sonda AFM, cuya punta termina en un solo átomo de cobre, se acercó gradualmente al enlace hierro-carbono hasta que se romp ... más
Nueva ruta hacia los plásticos químicamente reciclables
A medida que la carga de basura de caucho y plástico del planeta aumenta sin cesar, los científicos se fijan cada vez más en la promesa del reciclaje en circuito cerrado para reducir los residuos. Un equipo de investigadores del Departamento de Química de Princeton anuncia el descubrimiento ... más
-
Noticias
Un equipo internacional de investigación dirigido por el Departamento de Materia Cuántica Microestructurada del MPSD informa de la primera observación de transporte quiral conmutable en un cristal estructuralmente aciral, el superconductor Kagome CsV₃Sb₅. Su trabajo se ha publicado en Natur ... más
La combinación de dos proteínas tiene un efecto regenerador en el Parkinson
El Parkinson a un trastorno motor, originado por la pérdida de neuronas dopaminérgicas en la sustancia negra del cerebro. Estas neuronas son las células nerviosas que producen dopamina, un neurotransmisor que tiene un papel central en la modulación de los movimientos involuntarios. La inves ... más
Materiales gobernados por la luz
Los materiales híbridos son aquellos que combinan componentes de distinta naturaleza (orgánicos e inorgánicos) con el fin de conseguir materiales distintos a los convencionales, que presentan propiedades nuevas o mejoradas por efecto sinérgico entre sus componentes. Rebeca Sola, investigado ... más
- 1Un nuevo método de refrigeración
- 2Rompiendo el amoníaco: Un nuevo catalizador para generar hidrógeno a partir de amoníaco a bajas temperaturas
- 3Un sistema solar convierte el plástico y los gases de efecto invernadero en combustibles sostenibles
- 4Los átomos de un cristal saltan de forma similar a las partículas cósmicas
- 5De la carretera al plato: la lechuga absorbe aditivos tóxicos del desgaste de los neumáticos
- 6La electroquímica convierte el carbono en moléculas útiles
- 7Convertir minas abandonadas en baterías
- 8Uso del aprendizaje automático para mejorar la evaluación de la toxicidad de las sustancias químicas
- 9Convertir los residuos plásticos en un valioso aditivo para el suelo
- 10El extracto de una especia común de cocina podría ser la clave para conseguir pilas de combustible más ecológicas y eficientes
- Elegantes experimentos con la luz
- Sartorius con un claro crecimiento de dos dígitos en el ejercicio 2022
- Descubren un nuevo método para controlar las reacciones químicas
- OQ Chemicals invierte en ampliación de capacidad para apoyar el mercado de ácidos carboxílicos
- Proyecto PlasCO₂: El gas de efecto invernadero transformado en materia prima