Cloro



Para otros usos de este término véase hipoclorito de sodio.
Azufre - Cloro - Argón
 
F
Cl
Br
I  
 
 

General
Nombre, símbolo, número Cloro, Cl, 17
Serie química Halógenos
Densidad 3,214 kg/m3
Apariencia amarillo verdoso
Propiedades atómicas
Masa atómica 35,453 u
Radio medio 100 pm
Radio atómico calculado 79 pm
Radio covalente 99 pm
Radio de Van der Waals 175 pm
Configuración electrónica [Ne]3s2 3p5
Estados de oxidación (Óxido) ±1, +3, +5, +7 (ácido fuerte)
Estructura cristalina Ortorrómbica
Propiedades físicas
Estado de la materia gas (no magnético)
Punto de fusión 171,6 K
Punto de ebullición 239,11 K
Entalpía de vaporización 10,2 kJ/mol
Entalpía de fusión 3,203 kJ/mol
Presión de vapor 1300 Pa
Velocidad del sonido sin datos
Información diversa
Electronegatividad 3,16 (Pauling)
Calor específico 480 J/(kg*K)
Conductividad eléctrica Sin datos
Conductividad térmica 0,0089 W/(m*K)
1er potencial de ionización 1251,2 kJ/mol
2° potencial de ionización 2298 kJ/mol
3er potencial de ionización 3822 kJ/mol
4° potencial de ionización 5158,6 kJ/mol
5° potencial de ionización 6542 kJ/mol
6° potencial de ionización 9362 kJ/mol
7° potencial de ionización 11018 kJ/mol
8° potencial de ionización 33604 kJ/mol
9° potencial de ionización 38600 kJ/mol
10° potencial de ionización 43961 kJ/mol
Isótopos más estables
iso. AN Periodo de semidesintegración MD ED MeV PD
35Cl 75,77% Cl es estable con 18 neutrones
36Cl Sintético 301000 a β-
ε
0,709
1,142
36Ar
36S
37Cl 24,23% Cl es estable con 20 neutrones
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.
Calculado a partir de distintas longitudes
de enlace covalente, metálico o iónico.

El cloro es un elemento químico de número atómico 17 situado en el grupo de los halógenos (grupo VII A) de la tabla periódica de los elementos. Su símbolo es Cl. En condiciones normales y en estado puro es un gas amarillo-verdoso formado por moléculas diatómicas, Cl2, unas 2,5 veces más pesado que el aire, de olor desagradable y venenoso. Es un elemento abundante en la naturaleza y se trata de un elemento químico esencial para muchas formas de vida.

Conocimientos adicionales recomendados

Tabla de contenidos

Características principales

En la naturaleza no se encuentra en estado puro ya que reacciona con rapidez con muchos elementos y compuestos químicos, sino que se encuentra formando parte de cloruros y cloratos, sobre todo en forma de cloruro de sodio, en las minas de sal y disuelto y en el agua de mar.


Se emplea para potabilizar el agua de consumo disolviéndolo en la misma; también tiene otras aplicaciones como oxidante, blanqueante y desinfectante. El cloro gaseoso es muy tóxico (neumotóxico) y se usó como gas de guerra en la Primera y Segunda Guerra Mundial.

Historia

El cloro (del griego χλωρος, que significa "amarillo verdoso") fue descubierto en 1774 por el sueco Carl Wilhelm Scheele, aunque creía que se trataba de un compuesto que contenía oxígeno. Lo obtuvo a partir de la siguiente reacción:

2 NaCl + 2H2SO4 + MnO2 → Na2SO4 + MnSO4 + 2 H2O + Cl2

En 1810 el químico inglés Humphry Davy demuestra que se trata de un elemento químico y le da el nombre de cloro debido a su color. El gas cloro se empleó en la Primera Guerra Mundial, siendo el primer caso de uso de armas químicas.

Abundancia y obtención

El cloro se encuentra en la naturaleza combinado con otros elementos, principalmente en forma de cloruro de sodio, NaCl, y también otros minerales como la silvina, KCl, o la carnalita, KMgCl3·6H2O. Es el halógeno más abundante en el agua marina con una concentración de unos 18000 ppm. En la corteza terrestre está presente en menor cantidad, unos 130 ppm. Es prácticamente imposible encontrarlo sin combinar con otros elementos, debido a su alta reactividad.

El cloro se obtiene principalmente (más del 95% de la producción) mediante la electrolisis de cloruro de sodio, NaCl, en disolución acuosa, denominado proceso del cloro-álcali. Se emplean tres métodos: electrolisis con celda de amalgama de mercurio, electrolisis con celda de diafragma y electrolisis con celda de membrana.

Electrolisis con celda de amalgama de mercurio

Fue el primer método empleado para producir cloro a escala industrial.

Se producen pérdidas de mercurio en el proceso generando problemas medioambientales. En las dos últimas décadas del siglo XX se mejoraron los procesos, aunque se siguen perdiendo unos 1,3 gramos de mercurio por tonelada de cloro producida. Por estos problemas medioambientales este proceso se ha ido sustituyendo por el que utiliza una celda de membrana y actualmente supone menos del 20% de la producción mundial de cloro.

Se emplea un cátodo de mercurio y un ánodo de titanio recubierto de platino u óxido de platino. El cátodo está depositado en el fondo de la celda de electrolisis y el ánodo sobre éste, a poca distancia.

La celda se alimenta con cloruro de sodio y, con la diferencia de potencial adecuada, se produce la electrolisis:

2Cl – 2e- → Cl2
Hg + 2Na+ + 2e → NaHg

A continuación se procede a la descomposición de la amalgama formada para recuperar el mercurio. La base sobre la que está la amalgama está ligeramente inclinada y de esta forma va saliendo de la celda de electrolisis y se pasa a una torre en donde se añade agua a contracorriente, produciéndose las reacciones:

H2O + 1e → 1/2H2 + OH
NaHg – 1e → Na+ + Hg

De esta forma el mercurio se reutiliza.

Con este método se consigue una sosa (NaOH) muy concentrada y un cloro muy puro, sin embargo consume más energía que otros métodos y existe el problema de contaminación por mercurio.

Electrolisis con celda de diafragma

Este método se emplea principalmente en Canadá y Estados Unidos.

Se emplea un cátodo perforado de acero o hierro y un ánodo de titanio recubierto de platino u óxido de platino. Al cátodo se el adhiere un diafragma poroso de fibras de asbesto y mezclado con otras fibras (por ejemplo con politetrafluoroetileno). Este diafragma separa al ánodo del cátodo evitando la recombinación de los gases generados en estos.

Se alimenta el sistema continuamente con salmuera que circula desde el ánodo hasta el cátodo. Las reacciones que se producen son las siguientes:

2Cl – 2e → Cl2 (en el ánodo)
2H+ + 2e → H2 (en el cátodo)

En la disolución queda una mezcla de NaOH y NaCl. El NaCl se reutiliza y el NaOH tiene interés comercial.

Este método tiene la ventaja de consumir menos energía que el que emplea amalgama de mercurio, pero el inconveniente de que el NaOH obtenido es de menor pureza, por lo que generalmente se concentra. También existe un riesgo asociado al uso de asbestos.

Electrolisis con celda de membrana

Este método es el que se suele implantar en las nuevas plantas de producción de cloro. Supone aproximadamente el 30% de la producción mundial de cloro.

Es similar al método que emplea celda de diafragma: se sustituye el diafragma por una membrana sintética selectiva que deja pasar iones Na+, pero no iones OH o Cl.

El NaOH que se obtiene es más puro y más concentrado que el obtenido con el método de celda de diafragma, y al igual que ese método se consume menos energía que en las de amalgama mercurio, aunque la concentración de NaOH sigue siendo inferior,se obtienen concentraciones del 32% a 35%, y es necesario concentrarlo. Por otra parte, el cloro obtenido por el método de amalgama de mercurio es algo más puro. La tercera generación de membranas ya supera en pureza de cloro a las celdas de mercúrio.

Compuestos

  • Algunos cloruros metálicos se emplean como catalizadores. Por ejemplo, FeCl2, FeCl3, AlCl3.
  • Ácido hipocloroso, HClO. Se emplea en la depuración de aguas y alguna de sus sales como agente blanqueante.
  • Ácido cloroso, HClO2. La sal de sodio correspondiente, NaClO2, se emplea para producir dióxido de cloro, ClO2, el cual se usa como desinfectante.
  • Ácido clórico (HClO3). El clorato de sodio, NaClO3, también se puede emplear para producir dióxido de cloro, empleado en el blanqueo de papel, así como para obtener perclorato.
  • Ácido perclórico (HClO4). Es un ácido oxidante y se emplea en la industria de explosivos. El perclorato de sodio, NaClO4, se emplea como oxidante y en la industria textil y papelera.
  • Compuestos de cloro como los clorofluorocarburos (CFCs) contribuyen a la destrucción de la capa de ozono.
  • Algunos compuestos orgánicos de cloro se emplean como pesticidas. Por ejemplo, el hexaclorobenceno (HCB), el para-diclorodifeniltricloroetano (DDT), el toxafeno, etcétera.
  • Muchos compuestos organoclorados presentan problemas ambientales debido a su toxicidad, por ejemplo los pesticidas anteriores, los bifenilos policlorados (PCBs), o las dioxinas.

Isótopos

En la naturaleza se encuentran dos isótopos estables de cloro. Uno de masa 35 uma, y el otro de 37 uma, con unas proporciones relativas de 3:1 respectivamente, lo que da un peso atómico para el cloro de 35,5 uma.

El cloro tiene 9 isótopos con masas desde 32 uma hasta 40 uma. Sólo tres de éstos se encuentran en la naturaleza: el 35Cl, estable y con una abundancia del 75,77%, el 37Cl, también estable y con una abundancia del 24,23%, y el isótopo radiactivo 36Cl. La relación de 36Cl con el Cl estable en el ambiente es de aproximadamente 700 × 10–15:1.

El 36Cl se produce en la atmósfera a partir del 36Ar por interacciones con protones de rayos cósmicos. En el subsuelo se genera 36Cl principalmente mediante procesos de captura de neutrones del 35Cl, o por captura de muones del 40Ca. El 36Cl decae a 36S y a 36Ar, con un periodo de semidesintegración combinado de 308000 años.

El período de semidesintegración de este isótopo hidrofílico y no reactivo lo hace útil para la datación geológica en el rango de 60000 a 1 millón de años. Además, se produjeron grandes cantidades de 36Cl por la irradiación de agua de mar durante las detonaciones atmosféricas de armas nucleares entre 1952 y 1958. El tiempo de residencia del 36Cl en la atmósfera es de aproximadamente 1 semana. Así pues, es un marcador para las aguas superficiales y subterráneas de los años 1950, y también es útil para la datación de aguas que tengan menos de 50 años. El 36Cl se ha empleado en otras áreas de las ciencias geológicas, incluyendo la datación de hielo y sedimentos.

Núclido Abundancia Masa Espín Periodo de semidesintegración Producto de desintegración
32Cl - 31,9857 1 298 ms ε
33Cl - 32,9775 3/2 2,51 s ε
34Cl - 33,9738 0 1,53 s ε
35Cl 75,77 34,9689 3/2 - -
36Cl - 35,9683 2 301000 a β-
37Cl 24,23 36,9659 3/2 - -
38Cl - 37,9680 2 37,2 m β-
39Cl - 38,9680 3/2 55,6 m β-
40Cl - 39,9704 2 1,38 m β-
41Cl - 40,9707 n.m. 34 s β-
42Cl - 41,9732 n.m. 6,8 s β-
43Cl - 42,9742 n.m. 3,3 s β-


Precauciones

El cloro provoca irritación en el sistema respiratorio, especialmente en niños y personas mayores. En estado gas irrita las mucosas y en estado líquido quema la piel. Se puede detectar en el aire por su olor a partir de 3,5 ppm, siendo mortal a partir de unos 1000 ppm. Se usó como arma química en la Primera Guerra Mundial.

Una exposición aguda a altas (pero no letales) concentraciones de cloro puede provocar edema pulmonar, o líquido en los pulmones. Una exposición crónica a concentraciones de bajo nivel debilita los pulmones aumentando la susceptibilidad a otras enfermedades pulmonares.

En muchos países se fija como límite de exposición en el trabajo para este gas 0,5 ppm (media de 8 horas diarias, 40 horas a la semana).

Se pueden producir humos tóxicos cuando se mezcla hipoclorito de sodio con urea, amoniaco o algún otro producto de limpieza. Estos humos consisten en una mezcla de cloro y cloruro de nitrógeno; por lo tanto, estas combinaciones deben evitarse.

Mantener alejado de los niños.

Enlaces externos

  • ATSDR en Español - ToxFAQs™: cloro
  • EnvironmentalChemistry.com - Cloro
  • Instituto Nacional de Seguridad e Higiene en el Trabajo de España: Ficha internacional de seguridad química del cloro.
  • Los Alamos National Laboratory - Cloro
  • WebElements.com - Cloro
  • Agrupación de Fabicantes de Cloro


stq:Chlor

 
Este articulo se basa en el articulo Cloro publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.